DOI: http://dx.doi.org/10.18782/2320-7051.4008

ISSN: 2320 – 7051 *Int. J. Pure App. Biosci.* **5** (5): 935-943 (2017)

Research Article

Effect of Conservation Tillage Systems and Nutrient Management Practices on Productivity and Economics of Crops in Different Crop Sequences under Rainfed Conditions

Prabhamani, P. S.^{*} and Babalad, H. B.

Department of Agronomy, College of Agriculture, Dharwad, UAS, Dharwad-580005 *Corresponding Author E-mail: prabha829@gmail.com Received: 8.06.2017 | Revised: 13.07.2017 | Accepted: 19.07.2017

ABSTRACT

Field studies were carried out during third year of the fixed site in kharif and rabi seasons of 2015-16 at MARS, Dharwad to evaluate different conservation tillage systems and nutrient management practices on crop yields in three sequence cropping systems. No tillage with BBF and FB, crop residues retained on the surface and application of inorganic fertilizers along with FYM (CT_1NM_2 and CT_3NM_2) were recorded significantly higher yields in all the cropping systems in both the seasons over other treatments and conventional tillage systems. With respect to system productivity CT_1 and CT_3 recorded significantly higher maize equivalent yield (7914 and 7786 kg ha⁻¹) as compared to other tillage practices. With respect to cropping systems groundnut followed by sorghum has recorded higher productivity over rest (9575 kg ha⁻¹). Between the nutrient management application of RDF along with FYM found significantly superior with respect to net returns over rest of the treatments (₹60654 ha⁻¹). Among the interactions $CT_1CS_1NM_1$ recorded significantly higher net returns (₹ 95777 ha⁻¹) and found superior over other interactions.

Key words: Conservation tillage, Residue cover, Cropping systems, Nutrient management, Crop productivity, Economics

INTRODUCTION

Degradation of land under rainfed farming situation due to continuous erosion by water and wind, intensive mono cropping systems and bared soil surface has impoverished the soil resulted in declined soil fertility, stress bearing capacity and crop productivity. Hence more concentration was focused to develop sustainable agriculture production systems for on farm management of soil and natural resource efficiently without affecting the environment. Conservation agriculture (CA) has emerged as an effective strategy to achieve goals of sustainable agriculture worldwide. It has the potential to address increasing concerns of serious and widespread problems of natural resource degradation and environmental pollution, while enhancing system productivity.

Cite this article: Prabhamani, P.S. and Babalad, H.B., Effect of Conservation Tillage Systems and Nutrient Management Practices on Productivity and Economics of Crops in Different Crop Sequences under Rainfed Conditions, *Int. J. Pure App. Biosci.* **5**(5): 935-943 (2017). doi: http://dx.doi.org/10.18782/2320-7051.4008

ISSN: 2320 - 7051

In the world it is being practiced over an area of 120 million ha and found more sustainable under rainfed conditions¹². It seeks to conserve, improve and make more efficient use of natural resources through integrated management of soil, water, crops and other biological resources in combination with selected external inputs like fertilizers and organic manures. Such a technological package represents a resource saving and efficient agriculture that contributes to environmental conservation and at the same time enhances production on a sustainable basis.

This conservation agriculture is based on the three principles mainly minimum soil disturbance, maintenance of crop residues on the soil surface and crop diversification. Other elements of conservation agriculture include improved on-farm water management, organic soil cover, direct seeding through the crop residue and appropriate crop rotations to avoid disease and pest problems. When crop residues are retained on the soil surface in combination with no tillage or reduced tillage, it initiates processes that lead to improved soil quality and overall resource enhancement through greater ecological services. CA has emerged as a new paradigm to achieve sustainable agricultural production. In this context, the proposed study aims to evaluate the conservation agriculture practices on efficient utilization of natural resources and crop productivity and profitability.

MATERIAL AND METHODS

Long term field studies were initiated on a fixed site during 2013-14 at Main Agricultural Research Station, University of Agricultural Sciences, Dharwad, Karnataka, and the results of the year 2015-16 conducted during kharif and rabi seasons were considered for the present article. The studies to evaluate the different conservation tillage and nutrient management practices on crop productivity and profitability in different sequence cropping systems under rainfed conditions were carried out. The soil of the experimental site was typic Haplustarts having medium

Copyright © Sept.-Oct., 2017; IJPAB

organic carbon content (5.2 g kg⁻¹), low in available nitrogen content (240.8 kg ha⁻¹), medium in available phosphorus (26 kg ha⁻¹) and high in available potassium (335 kg ha⁻¹). Data on weather conditions during cropping seasons was presented in Fig. 1. The distribution of rainfall in the cropping period was erratic, hence crops suffered from moisture stress during different phenological stages. The annual rainfall received during 2015-16 cropping season was 621.0 mm distributed in 42 rainy days. It was 14 per cent lower than the average rainfall of 65 years (715.3 mm). The rainfall received during cropping period (June-2015 to March-2016) was 471.2 mm which was 26.7 percent lesser than 65 years normal (643.2 mm) distributed in 32 rainy days during same period. Atmospheric temperature was higher than normal average but it does not affect crop growth and relative humidity also did not show any influence on crops.

The experiment was laid out in stripsplit block design with three replications. Main plots consist of six vertical blocks mainly, CT₁: No tillage with BBF and crop residues retained on the surface, CT₂: Reduced tillage with BBF and partially incorporation of crop residues, CT₃: No tillage with flat bed with crop residues retained on the surface, CT₄: Reduced tillage with flat bed with partially incorporation of crop residues, CT₅: Conventional tillage with crop residues incorporation and CT₆: Conventional tillage with no crop residues as control. Sub plots in horizontal blocks having three cropping systems in sequence, CS₁: Groundnut -Sorghum, CS₂: Soybean - Wheat and CS₃: Maize - Chickpea, and two sub-sub plots NM₁: RDF (Recommended dose of fertilizer) and NM₂: RDF + FYM (Farm Yard Manure). Rotavator was passed in the standing crop stalk for shredding and partial incorporation of residue treatment plots and to shred the residues and retention on the surface rotaslasher was passed, in conventional tillage with crop residue incorporation plots residues were incorporated at the time of ploughing where as in no residue plots all the crop

Int. J. Pure App. Biosci. 5 (5): 935-943 (2017)

ISSN: 2320 - 7051

residues were removed after the harvesting and land was ploughed. Before kharif crop sowing in conservation tillage treatment the weeds were killed by spraying the contact herbicide paraquat @ 5ml 1^{-1} of water. BBF were prepared by passing plough at 210 cm distance by forming the furrows of 30 cm width and raised beds were formed with 180 cm top width. Seeds were treated with bio fertilizers on the day of sowing by *Rhizobium* and *PSB* and sowing was carried out using tractor drawn seed cum fertilizer drill. The RDF was applied for all the treatments as per the recommendation where as FYM was applied as per the treatments before fifteen days of sowing for kharif crops and before one week for *rabi* crops. Pre-emergent herbicide was sprayed for all the treatments uniformly to manage weeds. Observations on individual crop yields were recorded and the yield obtained from *kharif* and *rabi* crops were converted into maize equivalent yield (MEY) by multiplying yield with prevailing farm gate price of produce and divided by price of maize. Treatment wise cost of cultivation was calculated based on inputs cost, different variable cost items and labour charges at prevailing market prices during 2015-16.

 $MEY (kg ha^{-1}) =$

Maize grain yield (kg ha⁻¹) crop yield (kg ha⁻¹) Price of maize X Price of crop

- ----

RESULTS AND DISCUSSION

Crop yields of both kharif and rabi seasons were represented in table 1. All tillage and nutrient management practices showed significant influence on crop productivity. All the conservation tillage practices found superior over conventional tillage practices. Among all the tillage practices no tillage with BBF and crop residue retained on the surface (CT_1) recorded significantly higher crop yields in all the crops as compared to rest of the tillage practices and it was on par with no tillage with flat bed and crop residues retained on the surface (CT_3) . However conventional tillage with no crop residues noticed significantly lower crop yield during both kharif and rabi seasons. Between the nutrient management practices application of FYM along with inorganic fertilizers recorded significantly higher yield over without FYM.

This increased yields in CT_1 and CT_3 was mainly due to increased growth and yield attributes in all the crops. Crop residue retention on the surface may influenced the soil moisture content which is one of the main limiting sources for crop production in rainfed conditions. It reduces moisture losses by reducing evaporation and improves infiltration. Crop residues are the potential sources for crop nutrients and also help for soil carbon sequestration. Residue retention on the surface will alter microbial activity in the soil, slower decomposition occurs due to low surface area of crop residues available for microbes which leads to slower and continuous release of nutrients in the soil which makes nutrient available throughout the crop growth and also minimises nutrient losses in the soil as compared to crop residue incorporation where faster decomposition occurs and faster release of nutrients. Residue retention for longer duration also increases soil organic carbon content, and favours more microbial activity by altering good soil temperature and microclimatic conditions and helps to reduce loss of top fertile soil by erosion. Where as in case of no residue treatment soil may prone to moisture losses due to more evaporation which affects crop growth. No tillage has positive influence on physical and chemical properties. soil Minimum or reduced soil disturbance helps in build-up of soil structure and aggregation, repeated cultivation of soils may partially improve soil conditions favourable for crops but in long term use, will degrade physical conditions of soil by affecting the structure and aggregation. Soil organic carbon and nutrient losses are more in repeated tillage due to photo decomposition and volatilisation

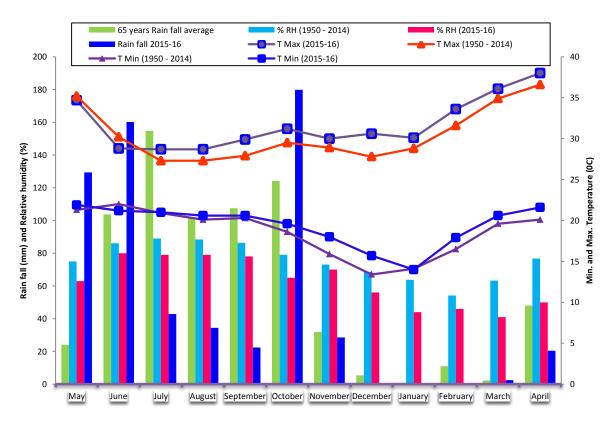
which can be minimised by reducing tillage intensity. These results are in accordance with the earlier findings of Sepat and Rana¹⁰, they found permanent beds with crop residues retained on the surface gave 25 per cent higher maize grain yield and 28.6 per cent of higher wheat yield as compared to conventional tillage with flat bed. Further permanent beds with crop residue retained on the surface gave 3.5 per cent higher system productivity as compared to fresh beds with crop residue incorporation. Increase in crop yields under conservation agriculture plots are also reported by Thierfelder *et al*¹⁴.; Ghuman and Sur⁵,; Aulakh *et al*².

The crop yields of groundnut, soybean, rabi sorghum, chickpea and wheat were converted in to maize equivalent yield (MEY) to interpret the response of cropping systems and presented in table 2. Data on system productivity of Groundnut-Sorghum (CS_1) , Soybean-Wheat (CS_2) and Maize-Chickpea (CS₃) cropping systems differed significantly as influenced by tillage and nutrient management practices. Significantly higher system productivity was observed with all conservation tillage systems as compared to conventional tillage with no crop residue incorporation (CT₆) further conventional tillage with crop residue incorporation (CT_5) also found superior over CT₆. Among the tillage practices CT_1 and CT_3 found superior over rest of tillage practices and recorded significantly higher maize equivalent yield (7914 and 7786 kg ha⁻¹ respectively) however in CT₆ lower yields were observed (6697 kg ha^{-1}) as compared to CT_5 (7251 kg ha^{-1}) and all conservation tillage practices. Irrespective of tillage practices groundnut-sorghum (CS_1) produced significantly higher crop productivity (9575 kg ha⁻¹) as compared to soybean-wheat (CS_2) and maize-chickpea (CS_3) (6646 and 6122 kg ha⁻¹ respectively), and which CS₂ differed significantly with each other as compared to CS₃. Between the nutrient management practices application of RDF along with FYM (NM₂) recorded significantly higher system productivity (7629 kg ha⁻¹) as compared to NM_1 (7266 kg ha⁻¹).

Among the interactions $CT_1CS_1NM_2$ recorded significantly higher maize equivalent yield (10269 kg ha⁻¹) over rest of the combinations. Similar results were also found by Usadadiya and Patel¹⁵, they revealed that application of inorganic fertilizers along with FYM has increased wheat grain yield by 4.9 percent over inorganic fertilizer alone.

Increased maize equivalent yield in CS_1 was mainly because of higher groundnut yield in *kharif* and sorghum yield in *rabi* and also good market price for both the crops as compared to rest of the crops. Even though CS_3 is a potential cropping system in this region because of lesser *kharif* rainfall maize yields were decreased hence lower system productivity has recorded.

Higher system productivity in CT_1 and CT₃ might be due to better conservation of rain water, improved soil aeration and high root proliferation could help the crops for better growth and higher yield³. In case of conservation tillage treatments minimum/ no soil disturbance along with crop residues application influenced positively on soil physical properties mainly bulk density, aggregate stability, water holding capacity (WHC) etc. and decomposition of crop residues favored the crops by improving soil organic carbon (OC) and microbial activity in turn influenced on nutrient transformation and availability^{3,8,11}. Lower yields with conventional tillage plot may be attributed to degradation of soil physical, chemical and biological properties mainly lower organic carbon and nutrient stratification in the soil, destruction of soil structure and lower WHC of the soil. Similar findings were also reported by Hati *et al*⁶, after three experimental years, they found 9.2 per cent increased soil organic carbon stock in no tillage as compared to conventional tillage. Similarly, nutrient stratification in conservation tillage practice was also recorded by many authors. Stratified nutrients especially in 0-15 cm surface soil may be attributed to steady supply of nutrients to crops throughout growing period which enhanced better crop growth and yield


Int. J. Pure App. Biosci. 5 (5): 935-943 (2017)

ISSN: 2320 - 7051

parameters as compared to conventional tillage practices.

However with respect to economics CT₃ found superior over all tillage systems and recorded significantly higher net returns and B-C ratio (\gtrless 60654 ha⁻¹ and 2.3) and CT₁ and CT₄ were next best (₹57279 and 55066 ha⁻¹, 2.10 and 2.15 respectively) treatments. Between the conventional tillage treatments CT_5 was significantly superior over CT_6 (\gtrless 44696 and 36945 ha⁻¹, 1.83 and 1.68 respectively). Even though CT_1 recorded significantly higher yield, due to increased cost of cultivation for BBF preparation in both the seasons has reduced net returns as compared to flat bed. Among the cropping systems net returns and B-C ratio were significantly higher in CS_1 (₹ 82696 ha⁻¹ and 2.65) as compared to CS_2 and CS_3 (₹ 41623)

and 28818 ha⁻¹, 1.84 and 1.54 respectively). Between the nutrient management NM₁ found significantly higher economics with respect to net returns and B-C ratio (₹ 54335 ha⁻¹ and 2.18) as compared to NM₂ (₹ 47757 ha⁻¹ and 1.83), this might be due to increased cost of FYM as compared to yield improvement indicating the addition of FYM was had little effect on crop yield and that can be substituted by crop residue retention or incorporation in the system continuously. With respect to economics these results are in accordance with the findings of Anup Das et al¹.,; Cociu and Cizmas⁴,; Sepat and Rana¹⁰,; Thakur et al¹³.,; Jat *et al*⁷..; Sekar *et al*⁹. They revealed that increased net returns and B-C ration in conservation tillage is mainly due to the reduced fuel burning by reducing tillage intensity, increased crop yields.

Months Fig. 1: Mean monthly mateorological data for the experimental year (2015-16) and the mean ofpast 65 years (1950-2014) at Main Agricultural Research Station, UAS, Dharwad

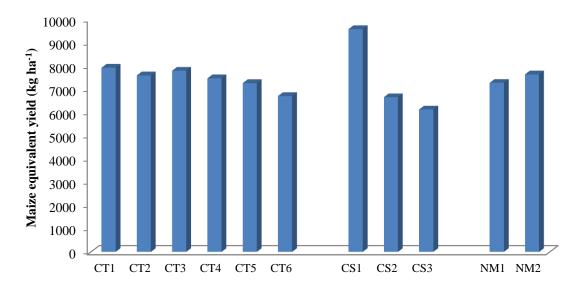


Fig. 2: Maize equivalent yield (kg ha⁻¹) as influenced by conservation tillage, sequence cropping systems and nutrient management practices

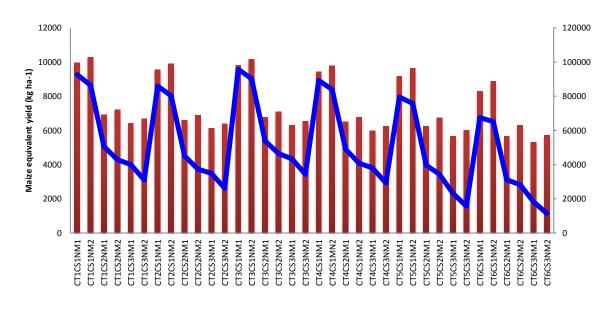


Fig. 3 Interaction effects of tillage, cropping systems and nutrient management practices on system productivity

Prabhamani and Babalad Int. J. Pure App. Biosci. 5 (5): 935-943 (2017) Table 1: Yield of *kharif* and *rabi* crops (kg ha⁻¹) obtained as influenced by different conservation

TreatmentGroundnutSoybeanMaizeSorghumWheatChickpeaTillage practicesdry pod (kg ha')(kg	tillage and nutrient management practices during 2015-16										
CT1 2432a 1423a 3318a 1893a 1862a 1394a CT2 2352ab 1344bc 3152a-c 1804bc 1788ab 1344a CT3 2403ab 1394ab 3251ab 1869ab 1831ab 1365a CT4 2322ab 1323c 3080bc 1780c 1762ab 1310a CT5 2261b 1290c 3003cd 1760c 1730b 1224b CT6 2111c 1229d 2797d 1542d 1551c 1172b S.Em ± 46.6 17.9 67.6 23.4 35.5 25.9 Nutrient management 2363a 1381a 3155a 1810a 1798a 1342a S.Em ± 2.0 4.3 2.6 2.4 5.2 2.3 Interactions (CT X NM) 2390c 1386c 3270c 1872b 1827c 1361d CT1NM1 2390c 1386c 3270c 1872b 1827c 1361d CT2NM1	Treatment	Groundnut	Soybean	Maize	Sorghum	Wheat	Chickpea				
CT₂ 2352ab 1344bc 3152a-c 1804bc 1788ab 1344a CT₃ 2403ab 1394ab 3251ab 1869ab 1831ab 1365a CT₄ 2322ab 1323c 3080bc 1780c 1762ab 1310a CT₅ 2261b 1290c 3003cd 1760c 1730b 1224b CT₅ 2261b 1290c 3003cd 1760c 1730b 1224b CT₅ 2261b 1290c 3003cd 1542d 1551c 1172b S.Em ± 46.6 17.9 67.6 23.4 35.5 25.9 Nutrient management 2363a 1381a 3155a 1810a 1798a 1342a S.Em ± 2.0 4.3 2.6 2.4 5.2 2.3 Interactions (CT X NM) 2390c 1386c 3270c 1872b 1827c 1361d CT₁NM₁ 2390c 1387c 3203d 1837c 1427a CT₂NM₂ 2392c <	Tillage practices	dry pod (kg ha ⁻¹)									
CT ₃ 2403ab 1394ab 3251ab 1869ab 1831ab 1365a CT ₄ 2322ab 1323c 3080bc 1780c 1762ab 1310a CT ₅ 2261b 1290c 3003cd 1760c 1730b 1224b CT ₆ 2111c 1229d 2797d 1542d 1551c 1172b S.Em ± 46.6 17.9 67.6 23.4 35.5 25.9 Nutrient management 2264b 1286b 3045b 1739b 1710b 1261b NM ₂ 2363a 1381a 3155a 1810a 1798a 1342a S.Em ± 2.0 4.3 2.6 2.4 5.2 2.3 Interactions (CT X NM) 2390c 1386c 3270c 1872b 1827c 1361d CT ₁ NM ₁ 2390c 1386c 3270c 1872b 1827c 1361d CT ₁ NM ₂ 2473a 1459a 3367a 1914a 1897a 1427a CT ₂ NM ₁	CT ₁	2432a	1423a	3318a	1893a	1862a	1394a				
CT4 2322ab 1323c 3080bc 1780c 1762ab 1310a CT5 2261b 1290c 3003cd 1760c 1730b 1224b CT6 2111c 1229d 2797d 1542d 1551c 1172b S.Em ± 46.6 17.9 67.6 23.4 35.5 25.9 Nutrient management 2264b 1286b 3045b 1739b 1710b 1261b NM2 2363a 1381a 3155a 1810a 1798a 1342a S.Em ± 2.0 4.3 2.6 2.4 5.2 2.3 Interactions (CT X NM) 2390c 1386c 3270c 1872b 1827c 1361d CT_1NM1 2390c 1386c 3270c 1872b 1827c 1309g CT_2NM1 2311e 1300e 3100f 1770e 1760e 1309g CT_3NM1 2358d 1354d 3203d 1837c 1816cd 1379c CT_3NM2	CT ₂	2352ab	1344bc	3152а-с	1804bc 1788ab		1344a				
CT_5 2261b1290c3003cd1760c1730b1224b CT_6 2111c1229d2797d1542d1551c1172b $S.Em \pm$ 46.617.967.623.435.525.9Nutrient management7710b1261b1730b1710b1261b NM_1 2264b1286b3045b1739b1710b1261b NM_2 2363a1381a3155a1810a1798a1342a $S.Em \pm$ 2.04.32.62.45.22.3Interactions (CT X NM)2473a1386c3270c1872b1827c1361d CT_1NM_1 2390c1386c3270c1872b1827c1361d CT_2NM_1 2311e1300e3100f1770e1760e1309g CT_3NM_1 2358d1354d3208d1841c1794d1332f CT_4NM_1 2275f1286e3032h1752f1734f1274h CT_5NM_2 2370d1360d3127e1808d1790d1346e CT_5NM_1 2205g1243f2937i1712g1665g1176j CT_6NM_1 2031fe1337d3070g1807d1794d1227h CT_6NM_2 2317e1337d3070g1807d1794d1272h CT_6NM_2 2179h1311e2870j1597h1620h1228b	CT ₃	2403ab	1394ab	.394ab 3251ab		1831ab	1365a				
CT_62111c1229d2797d1542d1551c1172bS.Em \pm 46.617.967.623.435.525.9Nutrient managementNM_12264b1286b3045b1739b1710b1261bNM_22363a1381a3155a1810a1798a1342aS.Em \pm 2.04.32.62.45.22.3Interactions (CT X NM)2473a1459a3367a1914a1897a1427aCT_1NM_12390c1386c3270c1872b1827c1361dCT_2NM_12311e1300e3100f1770e1760e1309gCT_3NM_12358d1354d3208d1841c1794d1332fCT_3NM_12275f1286e3032h1752f1734f1274hCT_4NM_12205g1243f2937i1712g1665g1176jCT_6NM_22317e1337d3070g1807d1794d1272hCT_6NM_22179h1311e2870j1597h1620h1228i	CT ₄	2322ab	1323c	3080bc	1780c	1762ab	1310a				
S.Em \pm 46.617.967.623.435.525.9Nutrient managementNM12264b1286b3045b1739b1710b1261bNM22363a1381a3155a1810a1798a1342aS.Em \pm 2.04.32.62.45.22.3Interactions (CT X NM)1386c3270c1872b1827c1361dCT_1NM12390c1386c3270c1872b1827c1361dCT_2NM12391e1300e3100f1770e1760e1309gCT_3NM22392c1387c3203d1837c1816cd1379cCT_3NM12358d1354d3208d1841c1794d1332fCT_4NM12275f1286e3032h1752f1734f1274hCT_5NM22370d1360d3127e1808d1790d1346eCT_5NM12205g1243f2937i1712g1665g1176jCT_6NM12043i1148g2723k1487i1481i1115kCT_6NM22179h1311e2870j1597h1620h1228i	CT ₅	2261b	1290c	3003cd	1760c	1730b	1224b				
Nutrient management Instance Instance Instance NM1 2264b 1286b 3045b 1739b 1710b 1261b NM2 2363a 1381a 3155a 1810a 1798a 1342a S.Em ± 2.0 4.3 2.6 2.4 5.2 2.3 Interactions (CT X NM) 2390c 1386c 3270c 1872b 1827c 1361d CT ₁ NM1 2390c 1386c 3270c 1872b 1827c 1361d CT_2NM1 2311e 1300e 3100f 1770e 1760e 1309g CT_3NM1 2312e 1387c 3203d 1837c 1816cd 1379c CT_3NM1 2358d 1354d 3208d 1841c 1794d 1332f CT_3NM1 2275f 1286e 3032h 1752f 1734f 1274h CT_4NM2 2370d 1360d 3127e 1808d 1790d 1346e CT_5NM1 2205g 1243f 29	CT ₆	2111c	1229d	2797d	1542d	1551c	1172b				
NM12264b1286b3045b1739b1710b1261bNM22363a1381a3155a1810a1798a1342aS.Em ±2.04.32.62.45.22.3Interactions (CT X NM)710b1386c3270c1872b1827c1361dCT1NM12390c1386c3270c1872b1827c1361dCT2NM22473a1459a3367a1914a1897a1427aCT2NM12311e1300e3100f1770e1760e1309gCT3NM12358d1354d3208d1841c1794d1332fCT3NM22448b1434b3294b1897a1869b1399bCT3NM12358d1354d3208d1841c1794d1332fCT4NM22370d1360d3127e1808d1790d1346eCT5NM12205g1243f2937i1712g1665g1176jCT5NM22317e1337d3070g1807d1794d1272hCT6NM12043i1148g2723k1487i1481i1115kCT6NM22179h1311e2870j1597h1620h1228i	S.Em ±	46.6	17.9	67.6	23.4	35.5	25.9				
NM22363a1381a3155a1810a1798a1342aS.Em \pm 2.04.32.62.45.22.3Interactions (CT X NM)CT1NM12390c1386c3270c1872b1827c1361dCT1NM22473a1459a3367a1914a1897a1427aCT2NM12311e1300e3100f1770e1760e1309gCT2NM22392c1387c3203d1837c1816d1379cCT3NM12358d1354d3208d1841c1794d1332fCT3NM22448b1434b3294b1897a1869b1399bCT4NM12275f1286e3032h1752f1734f1274hCT5NM22317e1360d3127e1808d1790d1346eCT5NM12205g1243f2937i1712g1665g1176jCT6NM12043i1148g2723k1487i1481i1115kCT6NM22179h1311e2870j1597h1620h1228i	Nutrient management										
S.Em ± 2.0 4.3 2.6 2.4 5.2 2.3 Interactions (CT X NM) 1386c 3270c 1872b 1827c 1361d CT ₁ NM ₁ 2390c 1386c 3270c 1872b 1827c 1361d CT ₁ NM ₂ 2473a 1459a 3367a 1914a 1897a 1427a CT ₂ NM ₁ 2311e 1300e 3100f 1770e 1760e 1309g CT ₂ NM ₂ 2392c 1387c 3203d 1837c 1816cd 1379c CT ₃ NM ₁ 2358d 1354d 3208d 1841c 1794d 1332f CT ₄ NM ₁ 2275f 1286e 3032h 1752f 1734f 1274h CT ₅ NM ₁ 2205g 1243f 2937i 1712g 1665g 1176j CT ₅ NM ₂ 2317e 1337d 3070g 1807d 1794d 1272h CT ₅ NM ₁ 2205g 1243f 2937i 1712g 1665g 1176j	NM ₁	2264b	1286b	3045b	1739b	1710b	1261b				
Interactions (CT X NM)1386c $3270c$ $1872b$ $1827c$ $1361d$ CT_1NM_12390c $1386c$ $3270c$ $1872b$ $1827c$ $1361d$ CT_2NM_22473a $1459a$ $3367a$ $1914a$ $1897a$ $1427a$ CT_2NM_12311e $1300e$ $3100f$ $1770e$ $1760e$ $1309g$ CT_3NM_22392c $1387c$ $3203d$ $1837c$ $1816cd$ $1379c$ CT_3NM_12358d $1354d$ $3208d$ $1841c$ $1794d$ $1332f$ CT_3NM_22448b $1434b$ $3294b$ $1897a$ $1869b$ $1399b$ CT_4NM_12275f $1286e$ $3032h$ $1752f$ $1734f$ $1274h$ CT_5NM_22310e $123fd$ $2937i$ $1712g$ $1665g$ $1176j$ CT_5NM_22317e $1337d$ $3070g$ $1807d$ $1794d$ $1272h$ CT_6NM_1 $2043i$ $1148g$ $2723k$ $1487i$ $1481i$ $1115k$ CT_6NM_2 $2179h$ $1311e$ $2870j$ $1597h$ $1620h$ $1228i$	NM ₂	2363a	1381a	3155a	1810a	1798a	1342a				
CT1NM12390c1386c3270c1872b1827c1361dCT1NM22473a1459a3367a1914a1897a1427aCT2NM12311e1300e3100f1770e1760e1309gCT2NM22392c1387c3203d1837c1816cd1379cCT3NM12358d1354d3208d1841c1794d1332fCT3NM22448b1434b3294b1897a1869b1399bCT3NM22448b1434b3294b1897a1869b1399bCT4NM12275f1286e3032h1752f1734f1274hCT4N22370d1360d3127e1808d1790d1346eCT5NM12205g1243f2937i1712g1665g1176jCT5NM22317e1337d3070g1807d1794d1272hCT6NM12043i1148g2723k1487i1481i1115kCT6NM22179h1311e2870j1597h1620h1228i	S.Em ±	2.0	4.3	2.6	2.4	5.2	2.3				
CT ₁ NM ₂ 2473a 1459a 3367a 1914a 1897a 1427a CT ₂ NM ₁ 2311e 1300e 3100f 1770e 1760e 1309g CT ₂ NM ₂ 2392c 1387c 3203d 1837c 1816cd 1379c CT ₃ NM ₁ 2358d 1354d 3208d 1841c 1794d 1332f CT ₃ NM ₁ 2358d 1434b 3294b 1897a 1869b 1399b CT ₃ NM ₂ 2448b 1434b 3208d 1841c 1794d 1332f CT ₄ NM ₁ 2275f 1286e 3032h 1752f 1734f 1274h CT ₄ NM ₁ 2205g 1243f 2937i 1712g 1665g 1176j CT ₅ NM ₁ 2205g 1243f 2937i 1712g 1665g 1176j CT ₅ NM ₂ 2317e 1337d 3070g 1807d 1794d 1272h CT ₆ NM ₁ 2043i 1148g 2723k 1487i 1481i 1115k	Interactions (CT X	Interactions (CT X NM)									
CT2NM12311e1300e3100f1770e1760e1309gCT2NM22392c1387c3203d1837c1816cd1379cCT3NM12358d1354d3208d1841c1794d1332fCT3NM22448b1434b3294b1897a1869b1399bCT4NM12275f1286e3032h1752f1734f1274hCT4NM22370d1360d3127e1808d1790d1346eCT5NM12205g1243f2937i1712g1665g1176jCT5NM22317e1337d3070g1807d1794d1272hCT6NM12043i1148g2723k1487i1481i1115kCT6NM22179h1311e2870j1597h1620h1228i	CT ₁ NM ₁	2390c	1386c	3270c	1872b	1827c	1361d				
CT_2NM_2 2392c1387c3203d1837c1816cd1379c CT_3NM_1 2358d1354d3208d1841c1794d1332f CT_3NM_2 2448b1434b3294b1897a1869b1399b CT_4NM_1 2275f1286e3032h1752f1734f1274h CT_4NM_2 2370d1360d3127e1808d1790d1346e CT_5NM_1 2205g1243f2937i1712g1665g1176j CT_5NM_2 2317e1337d3070g1807d1794d1272h CT_6NM_1 2043i1148g2723k1487i1481i1115k CT_6NM_2 2179h1311e2870j1597h1620h1228i	CT ₁ NM ₂	2473a	1459a	3367a	1914a	1897a	1427a				
CT_3NM_1 2358d1354d3208d1841c1794d1332f CT_3NM_2 2448b1434b3294b1897a1869b1399b CT_4NM_1 2275f1286e3032h1752f1734f1274h CT_4NM_2 2370d1360d3127e1808d1790d1346e CT_5NM_1 2205g1243f2937i1712g1665g1176j CT_5NM_2 2317e1337d3070g1807d1794d1272h CT_6NM_1 2043i1148g2723k1487i1481i1115k CT_6NM_2 2179h1311e2870j1597h1620h1228i	CT ₂ NM ₁	2311e	1300e	3100f	1770e	1760e	1309g				
CT_3NM_2 2448b1434b3294b1897a1869b1399b CT_4NM_1 2275f1286e3032h1752f1734f1274h CT_4NM_2 2370d1360d3127e1808d1790d1346e CT_5NM_1 2205g1243f2937i1712g1665g1176j CT_5NM_2 2317e1337d3070g1807d1794d1272h CT_6NM_1 2043i1148g2723k1487i1481i1115k CT_6NM_2 2179h1311e2870j1597h1620h1228i	CT ₂ NM ₂	2392c	1387c	3203d	1837c	1816cd	1379c				
CT_4NM_1 2275f1286e3032h1752f1734f1274h CT_4NM_2 2370d1360d3127e1808d1790d1346e CT_5NM_1 2205g1243f2937i1712g1665g1176j CT_5NM_2 2317e1337d3070g1807d1794d1272h CT_6NM_1 2043i1148g2723k1487i1481i1115k CT_6NM_2 2179h1311e2870j1597h1620h1228i	CT ₃ NM ₁	2358d	1354d	3208d	1841c	1794d	1332f				
CT_4NM_2 2370d1360d3127e1808d1790d1346e CT_5NM_1 2205g1243f2937i1712g1665g1176j CT_5NM_2 2317e1337d3070g1807d1794d1272h CT_6NM_1 2043i1148g2723k1487i1481i1115k CT_6NM_2 2179h1311e2870j1597h1620h1228i	CT ₃ NM ₂	2448b	1434b	3294b	1897a	1869b	1399b				
CT_5NM_1 2205g1243f2937i1712g1665g1176j CT_5NM_2 2317e1337d3070g1807d1794d1272h CT_6NM_1 2043i1148g2723k1487i1481i1115k CT_6NM_2 2179h1311e2870j1597h1620h1228i	CT ₄ NM ₁	2275f	1286e	3032h	1752f	1734f	1274h				
CT_5NM_2 2317e1337d3070g1807d1794d1272h CT_6NM_1 2043i1148g2723k1487i1481i1115k CT_6NM_2 2179h1311e2870j1597h1620h1228i	CT ₄ NM ₂	2370d	1360d	3127e	1808d	1790d	1346e				
CT_6NM_1 2043i 1148g 2723k 1487i 1481i 1115k CT_6NM_2 2179h 1311e 2870j 1597h 1620h 1228i	CT ₅ NM ₁	2205g	1243f	2937i	1712g	1665g	1176ј				
CT_6NM_2 2179h 1311e 2870j 1597h 1620h 1228i	CT ₅ NM ₂	2317e	1337d	3070g	1807d	1794d	1272h				
	CT ₆ NM ₁	2043i	1148g	2723k	1487i	1481i	1115k				
S.Em ± 6.3 7.8 6.34 5.5 8.0 4.4	CT ₆ NM ₂	2179h	1311e	2870j	1597h	1620h	1228i				
	S.Em ±	6.3	7.8	6.34	5.5	8.0	4.4				

Main plots

- CT₁: No tillage with BBF and crop residues retained on the surface
- CT₂: Reduced tillage with BBF and incorporation of crop residues
- CT₃: No tillage with flat bed with crop residues retained on the surface
- CT₄: Reduced tillage with flat bed with incorporation of crop residues
- CT₅: Conventional tillage with crop residues incorporation
- CT₆: Conventional tillage (no crop residues)

Sub plots

NM1: RDF (Recommended dose of fertilizer) NM₂: RDF + FYM (Farm Yard Manure)

Int. J. Pure App. Biosci. 5 (5): 935-943 (2017)

conservation tillage and nutrient management practices during 2015-16											
Treatments		Maize equivalent yield (kg ha ⁻¹)			Net	Net returns (₹ ha ⁻¹)			B:C		
Tillage (T)		Nutrient management			Nutrient management			Nutrient management			
Cropping systems (CS)		NM ₁	NM ₂	Mean	NM ₁	NM ₂	Mean	NM_1	NM ₂	Mean	
CT ₁	CS ₁	9964c	10269a	10116a	92637b	86400e	89519ab	2.98	2.51	2.75	
	CS ₂	6917m	7223k	7070e	506231	42909p	46766fg	2.09	1.74	1.92	
	CS ₃	6430r	66790	6555gh	40058r	31046u	35552jk	1.80	1.50	1.65	
	Mean	7770	8057	7914a	61106	53452	57279b	2.29	1.91	2.10	
	CS1	9560f	9905c	9733bc	85988e	80312g	83150c	2.80	2.38	2.59	
CT ₂	CS ₂	6589p	6894m	6742e-g	45042o	37310s	41176hi	1.95	1.63	1.79	
012	CS ₃	6139t	6404r	6271h-j	34978t	26188x	305831	1.68	1.41	1.55	
	Mean	7430	7734	7582b	55336	47937	51636c	2.14	1.81	1.98	
	CS1	9819d	10167b	9993ab	95777a	90149c	92963a	3.30	2.72	3.01	
CT ₃	CS ₂	6778n	71081	6943ef	53848k	46473n	50160f	2.31	1.88	2.09	
C1 ₃	CS ₃	6300s	6541pq	6420g-i	43397p	34278t	38838ij	1.97	1.60	1.78	
	Mean	7632	7939	7786a	64341	56967	60654a	2.52	2.07	2.30	
CT ₄	CS ₁	9427g	9791d	9609c	89288d	83884f	86586bc	3.09	2.58	2.83	
	CS ₂	6504q	6782n	6643fg	49016m	40908q	44962gh	2.16	1.76	1.96	
	CS ₃	5990u	6253s	6121i-k	38060s	29240u	33650kl	1.83	1.50	1.67	
	Mean	7307	7609	7458b	58788	51344	55066b	2.36	1.95	2.15	
	CS1	9166h	9643e	9405c	79564g	75748h	77656d	2.63	2.28	2.46	
CT ₅	CS ₂	6262s	6742n	6502gh	39628r	34355t	36992i-k	1.82	1.57	1.70	
C15	CS ₃	5667uw	6024u	5845k	23191y	15689z	19440m	1.41	1.23	1.32	
	Mean	7031	7470	7251c	47461	41930	44696d	1.96	1.69	1.83	
	CS1	8307j	8880i	8594d	67546i	65065j	66305e	2.39	2.10	2.24	
CT ₆	CS ₂	5657w	6303s	5980jk	31160u	28207w	296831	1.65	1.47	1.56	
C16	CS ₃	5313x	5721v	55171	18233z	11459z	14846n	1.32	1.17	1.25	
Mean		6426	6968	6697d	38979	34910	36945e	1.79	1.58	1.68	
NI	M Mean	7266b	7629a		54335a	47757b		2.18	1.83		
C	S Mean										
CS_1		9575a		82696			2.65				
CS_2		6646b		41623			1.84				
CS ₃		6122c		28818			1.54				
CT Sources		S.Em ± 62		<u>S.Em ±</u>			S.Em ±				
CS		122		<u> </u>			0.02 0.03				
NM		5		70			0.00				
$CT \times CS$		107		1497			0.03				
$CT \times NM$		12		171			0.00				
$\frac{\text{CS} \times \text{NM}}{\text{CT} \times \text{CS} \times \text{NM}}$			9 21		<u>121</u> 296			0.00 0.01			
		21			296			0.01			

 Table 2: Maize equivalent yield and economics of sequence cropping systems as influenced by different conservation tillage and nutrient management practices during 2015-16

Main plots

CT₁: No tillage with BBF and crop residues retained on the surface

CT₂: Reduced tillage with BBF and incorporation of crop residues

CT₃: No tillage with flat bed with crop residues retained on the surface

- CT₄: Reduced tillage with flat bed with incorporation of crop residues
- CT₅: Conventional tillage with crop residues incorporation

CT₆: Conventional tillage (no crop residues)

Sub plots

 CS_1 : Groundnut - Sorghum CS_2 : Soybean - Wheat CS_3 : Maize - Chickpea **Sub-sub plots** NM₁: RDF (Recommended dose of fertilizer) NM₂: RDF + FYM (Farm Yard Manure)

CONCLUSION

No tillage with BBF and crop residues retained on the surface and application of RDF along with FYM in all the cropping systems produced significantly higher productivity over conventional tillage without crop residues and application of RDF alone. No tillage flatbed with residues retention on the surface was found most profitable under rainfed conditions.

REFERENCES

- Anup Das, Lal, R., Patel, D.P., Idapuganti, R.G., Layek, J., Ngachan, S.V., Ghosh, P. K., Bordoloi, J. and Manoj Kumar, Effects of tillage and biomass on soil quality and productivity of lowland rice cultivation by small scale farmers in North Eastern India. *Soil Till. Res.*, 143: 50–58 (2014).
- Aulakh, M.S., Manchanda, J.S., Garg, A.K., Shrvan Kumar, Dercon, G. and Nguyen, M.L., Crop production and nutrient use efficiency of conservation agriculture for soybean–wheat rotation in the Indo-Gangetic Plains of north western India. *Soil Till. Res.*, **120:** 50–60 (2012).
- Choudhary, V.K. and Kumar, P.S., Influence of mulching on productivity, root growth and weed dynamics of maize (*Zea mays*)-based cropping systems. *Indian J. Agron.*, **59(3):** 364-370 (2014).
- Cociu, A.I. and Cizmas, G.D., Effects of stabilization period of conservation agriculture practices on winter wheat, maize and soybean crops, in rotation. *Romanian Agric. Res.*, **30:** 171-181 (2013).
- 5. Ghuman, B.S. and Sur, H.S., Tillage and residue management effects on soil properties and yields of rainfed maize and wheat in a subhumid subtropical climate. *Soil Till. Res.*, **58:** 1-10 (2001).
- Hati, K.M., Chaudhary, R.S., Mohanty, M., Biswas, A.K. and Bandyopadhyay, K.K., Short-term tillage and fertilization impacts on soil organic carbon, aggregate stability and yield of soybean-wheat system in deep black soils of central India. *J. Indian Society Soil Sci.*, 62(4): 335-343 (2014).
- Jat, R.K., Sapkota, T.B., Singh, R.G., Jat, M.L., Mukesh Kumar and Gupta, R.K., Seven years of conservation agriculture in

a rice–wheat rotation of Eastern Gangetic Plains of South Asia: yield trends and economic profitability. *Field Crops Res.*, **164:** 199–210 (2014).

- Narayan, D. and Lal, B., Rainwater conservation and yield of sorghum (*Sorghum biclor*) as influenced by tillage and cover management practices in red soils. *Indian J. Agron.*, 54(4): 438-443 (2009).
- Sekar, I., Pal, S. and Kar, A., Economic and environmental impact of resource conserving technology: A study of zero tillage in the Indo-Gangetic Plains of India. *Indian J. Soil Conservation*, 43(2): 187-191 (2015).
- Sepat, S. and Rana, D.S., Effect of double no-till and permanent raised beds on productivity, profitability and physical properties of soil in maize (*Zea mays*)– wheat (*Triticum aestivum*) cropping system under Indo-Gangetic plains of India. *Indian J. Agron.*, 58(4): 469-473 (2013).
- Singh, K.K. and Sharma, S.K., Conservation tillage and crop residue management in rice-wheat cropping system. Centre for Advancement of Sustainable Agriculture, New Delhi. Pp. 23-32 (2005).
- Singh, K.M. and Meena, M.S., Economics of conservation agriculture: an overview. Munich Personal RePEc Archive, Paper No. 49381 (2013).
- Thakur, N.S., Kushwaha, B.B. and Sinha, N.K., Productivity and water use in *kharif* sorghum (*Sorghum bicolor*) under different land configuration and mulching. *Indian J. Agron.*, 56(1): 47-51 (2011).
- Thierfelder, C., Mwila, M. and Rusinamhodzi, L., Conservation agriculture in eastern and southern provinces of Zambia: Long-term effects on soil quality and maize productivity. *Soil Till. Res.*, **126:** 246–258 (2013).
- 15. Usadadiya, V.P. and Patel, R.H., Influence of preceding crops and nutrient management on productivity of wheat (*Triticum aestivum*)–based cropping system. *Indian J. Agron.*, **58(1):** 15-18 (2013).

Copyright © Sept.-Oct., 2017; IJPAB